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IN POROUS MEDIA 

I. E. Azizov and V. M. Entov UDC 532.564:519.63 

A physically consistent model is constructed to describe vaporization in a water- 
saturated porous medium. Results are presented from a numerical analysis of a 
frontal model and a model with a two-phase region. 

The mathematical description of processes involving phase transformations often leads 
to physical contradictions when done within the framework of the frontal approach, which is 
based on the hypothesis that there exists a phase transformation surface (front). For ex- 
ample, in the case of the crystallization of a binary melt, the frontal model leads to the 
phenomenon of "diffusional" supercooling and destabilization of the crystallization front 
[i, 2]. These contradictions can be eliminated in a more general theory which allows the 
formation of a two-phase region - a mixture of two different phases of the same substance, 
coexisting under conditions of thermodynamic equilibrium. A model with a two-phase region 
was first realized in the mechanics of frozen soils in [3]. 

Another approach is being developed in the theory of multiphase processes in porous 
media [4, 5]. This approach is based on the idea that the phase transformation of the pore 
fluid occurs over an extensive range of the temperature spectrum. The approach is based on 
experimental determinations of the phase composition from thermodynamic functions of state 
(state parameters). In this case, the diffusion equation of the pore moisture is used to 
describe both processes occurring without phase transitions and processes taking place in 
the presence of water-vapor transitions. The main difference between this approach and the 
theory employing a two-phase region lies in the method of closing the system of equations 
composed of conservation laws. In models with a two-phase region, the system is closed by 
the condition of thermodynamic equilibrium of the phases. In contrast to the models of phase 
transformation involving a temperature range, this approach not only makes it possible to 
avoid complex and time-consuming experiments for determination of the dependence of phase 
composition on the state parameters, but it also makes it unnecessary to calculate this de- 
pendence. 

In the present study, we attempt to offer a physically consistent description of the 
process of vapor formation in a water-saturated porous medium within the framework of a 
model with a two-phase region. 

I. Equations of Heat and Mass Transfer and Conditions at Discontinuities. The system 
of equations which describes heat and mass transfer in a porous medium saturated by a two- 
phase liquid is composed [6] of the equation of continuity of the mixture 
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Equations (i-3) are valid if the functions in them are sufficiently smooth over the 
space variables. In the presence of discontinuities, system (1-3) must be augmented by bal- 
ance conditions for mass, momentum, and energy at the discontinuities [7]. In the case of 
noninertial motion, these conditions have the form 
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where D and D i are projections of the velocities of points of the surface of discontinuity 
and the particles of the i-th phase along a normal n to the surface of discontinuity; Qn = 
-A(VT) n is the projection of the heat-flux vector on the normal n; s i is the saturation of 
the i-th phase; sl = s, s2 = i - s. 

The presumption that the phases are in thermodynamic equilibrium leads to the auxiliary 
conditions 

[T]~=0,  P , = P r ( T , ) .  (7) 

In the region of the vapor-water mixture, system (i-3) is closed by the equation of state of 
the phases and the functional relation P = Pr(T). The equations of state are sufficient to 
close system (1-3) in the frontal model. 

2. Equations of State~ Caloric Equations~ and Thermophysical Parameters. We will use 
the indices 1 and 2 to denote quantities pertaining to the water and water vapor, respec- 
tively. We will use the following equations of state and caloric equation: 

Pl = P] [1 q- a 1 (P --  Pa) --  ~1 (T --  Ta)l, p~ = P/(RT), (8) 

h~=dT+h ~ i : 1 ,  2, (9) 
where R i s  t he  u n i v e r s a l  gas c o n s t a n t .  

With e l a s t i c  s t r a i n s  of  the  medium, p o r o s i t y  i s  u s u a l l y  assumed to be equal  to  

re=moil + as (P-- Pa)]- (10) 

The dependence of ~i, G~, %i and %s on temperature and pressure will henceforth be ig- 
nored. 

We will use the following formulas for the phase permeabilities fi(s) 

/l(S)-~ s - -0 ,2  a,s, 0 , 2 ~ s ~ l ,  (11) 
0,8 

/~(s) {(1 ~-3s)( 0 '9 - - s  ) 3'5' 0 ~ s ~ 0 , 9 ,  
= 0,9 (12) 

0, 0 , 9 ~ s ~  1. 

For the  f u n c t i o n  Pr (T) ,  we w i l l  use an approximate  exp re s s i on  which fo l lows  from the  
Claus ius -Clapeyron  equa t ion  : 

Pr(r)=P, exp ln[-~-+-~- T~ T ' (15 )  

where A and B a re  known c o n s t a n t s ;  PC and Tr a r e  t he  p r e s s u r e  and t e m p e r a t u r e  co r respond ing  
to a certain equilibrium state of the vapor-water system. 

3. Transformation of the Heat and Mass Transfer Equations and the Conditions at Dis- 
continuities. Let us subject Eqs. (1-3) to preliminary transformations. Using caloric 
equations (9) and excluding the vectors v I and v2, after some simple transformations we can 
reduce system (i-3) to the form: 
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is the effective heat capacity; q = Plhl - P2h2 is the heat of phase transformation. 

In regions of the space s, system (16-17) reduces to a system of equations relative to 
P and T. In the region of the two-phase state, the number of unknowns decreases after sub- 
stitution of the function P = Pr(T) into the equation and again becomes equal to two. How- 
ever, s and T become unknowns in the latter case. 

Let us transform the right sides of Eqs. (16-17): 

~= s, -~,o~+ a P  ]]--~-+ 
2 -F ~,,ns, a,o, ] aT as _ (18) 

~=~ aT ] ~ -I- m (Pl - -  P~) at 
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(19) 

q _ ~ p e  (vp)Zq - OK~oT vTvP @ ~ vsvP -k KeAP. 

In  Eq .  ( 1 9 ) ,  we i g n o r e d  t h e  p r e s s u r e  d e p e n d e n c e  o f  p o r o s i t y ,  s i n c e  t h e  e n e r g y  c o n t r i b u -  
t i o n  c o n n e c t e d  w i t h  t h i s  d e p e n d e n c e  i s  n e g l i g i b l e  compared  t o  t h e  incoming  h e a t  f l o w .  

L e t  us  examine  s y s t e m  ( 1 8 - 1 9 )  in  t h e  r e g i o n s  o f  a o n e - p h a s e  s t a t e .  I n s e r t i n g  t h e  equa -  
t i o n  o f  s t a t e  o f  t h e  v a p o r  i n t o  Eqs.  ( 1 8 - 1 9 )  and assuming  t h a t  s = 0,  a f t e r  p e r f o r m i n g  some 
s i m p l e  t r a n s f o r m a t i o n s  we o b t a i n  t h e  f o l l o w i n g  f o r  t h e  s y s t e m  o f  e q u a t i o n s  in  t h e  v a p o r  r e -  
g i o n  

( ! ~ ma~s -Jr- m OP ~2m OT 1 (vp) ~ 1 H-AP, 
k 7 ot kr at P (20) 

aT OR kd (21) 
C2 - ~ -  ~- m - ~ -  = A~AT + ~ [(vP) z + PAP]. 

H ere ,  C2 = (1 - m)PsC s + mp2c2, A2 = (1 - m) t  s + mt2.  In  Eqs.  ( 1 0 - 2 1 ) ,  we can i g n o r e  t h e  
relation m = m(P) and assume that m = const = m a. Moreover, in actual porous media, a s << 
I/P. Thus a s can be dropped from Eq. (20). 

In the water region (s = i), we write Eqs. (18-19) as follows after we insert the 
equation of state of water 

~ ) ~ OT 
Pl Ot kp~ at (22)  

a 

= al (vP) z -- ~i @ vTv P q- AP, 
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OT OP T ~  ~ 1 
= p l c p ~  (VP) ~ + C1 --07- + m --07- A1AT + ~1 

(23) 
k 1( 9 4 )  k p~clAp ' - + ~ 9 , C p  1 . . . . . .  91 [~1 v T v  P + T 

where  C 1 = ( 1  - m ) P s C  s + mplcl~; A1 = ( 1  - m ) •  s + mX1. E q u a t i o n s  (22)  and (23)  can be s im- 
p l i f i e d  by discarding the small terms: 

I*lm (% @ %) OP p, lm [~10T = __[31vTvP-]-AP, (24)  
k Ot k Ot 

8T 
plc~,vTvP. (25)  C I ~ = A 1 A T 4 - ,  , .  

Here, the term ~I(VP) = was discarded in connection with its smallness. We also discarded 
terms connected with the work of the internal surface forces, and we put m = const = m a. 

Let us transform the mass- and heat-balance conditions at a discontinuity, using the 
generalized Darcy's law and conditions (5-7). We write the mass-balance condition for the 
surface of discontinuity in the form 

2 2 

i = 1  i = I  

from which we obtain 

-- [Ks (vP):~] -+ -- m [s]J (9~ -- p$) D (26) 

We similarly transform the condition of heat balance at the discontinuity 

- -  [K~ (vP)~]2 = mq is]_ + D + [A (vT)~] +. ( 27 ) 

In the model with the two-phase region, we add the following equation to conditions (26-27) 

(vP)7 = P~ (T.)(vT)~ -- (28)  

4. Frontal Model and Model with Two-Phase Region in the Case of Unidimensional Proces- 
ses. Let us examine a unidimensional vaporization process. Let P0 and To be the initial 
pressure and temperature and let them be constant at x > O. Meanwhile, P0 > Pr(T0) : 

P[,=o = Po, Tit= o = To. (29)  

We will assume that the following conditions hold on the boundary beginning with the moment 
of time t > 0 

f l u = o  = P1 < (To), ( 30 ) J 

[TL= o = r l .  

We assign the conditions at infinity through the limiting relations 

l i m P = P o ,  l i m T = T o .  (31)  

The frontal model and the model with a two-phase region permit similarity solutions in such 
a formulation. By making the substitution $ = x//t, we reduce Eqs. (18-21) and (24-25) to 
ordinary differential equations. The solutions of these equations in the transitional re- 
gions are combined by using the conditions for the discontinuities. 

We will write out the conditions on the vaporization front 

P.  = P+ = P- = P~(T,), (33)  

T,  = T + = T-, (34)  

T ' - - -  k p~h~p,+ k . . ,_ ~ A1 ~A~ _ ~2;\______Tp2h2p + m q _ _ ~ _ + _ . ~ T  ,+, (35)  
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where ~ is the similarity coordinate of the front. 

Equations (20-21) and (24-25) take the form: 

F~m P '  ~ #~m T'  (p,)z ~ P - -  T '  
4 -  . . . .  , ,, , , ,p ' ,  ( 3 6 )  

2 k P 2 k T P T 

for the vapor (0 ~ ~ ! 8) and 

2 CzT' - -  ~ m P =  Aor". + ~ [(p,)2 4- PP"], (37) 

p, 4- ~ ~.~om T' P" [~T'P', (38) 
2• 2 k 

leptc; P'T', -----~--~- T' = T" 4- (39) 
: 241 ~1A1 

for the water (8 ~ g 5 =). In the above equations, < = k(~ s + ~1)-z/(~im) is piezoelectric 
conductivity; ~i = AI/CI is the diffusivity of the water-saturated porous medium. 

We will use the following algorithm to solve the above problem numerically. We reduce 
system (36-39) to a first-order system and we choose four free parameters 6, T,, P'+, T '§ 
which we will use to control the "trajectory" of the solution of the Cauchy problem in the 
liquid and vapor regions. In the vapor region, this problem is solved from right to left 
with the "initial" data P,, T,, P'-, T'-, where P'- and T'- are found from conditions (32- 
35). The free parameters are varied until the boundary conditions are satisfied at infinity 
and at ~ = 0. 

In the model with the two-phase region, the entire numerical axis x > 0 is generally 
represented by three intervals: the vapor region 0 ~ x 5 Xz; the two-phase region X l 5 x 
X=; the water region X 2 5 x < ~. We use ~ and $ to represent the similarity coordinates of 
the boundary of the two-phase region (y < 8). The equations of the frontal model (36-39) 
remain valid in the vapor and water regions. In the two-phase region, we additionally use 
Eqs. (18-19) (the changeover to the similarity variable in these equations is quite simple 
and is not discussed here). At the boundaries of the two-phase region, saturation s is 
generally discontinuous. At the forward boundary (~ = ~), saturation undergoes the discon- 
tinuity 

s+= 1, s -=s* ,  (40) 

where s* is the sought value. We write out the conditions for ~: 

~ ,  (41) - - (K~P  '+ - -  KTP'-) = m(1 -- s*) (p~ -- p~) T 

A+T,+ (42) _ ( K ~ p , + _ K T p ' - ) = m q ( 1 - - s * ) - f - 4 -  - A-T ' - ,  

P~ = P+ = P-, P~ = P,(T~), (43) 

T~ = T+ = T- ,  (44) 

P ' -  = P;  (T6) r ' - .  ( 4 5 )  

On t h e  b o u n d a r y  g = ~ ,  s a t u r a t i o n  i s  c o n t i n u o u s  a n d  d e c r e a s e s  t o  z e r o :  s + = s -  = 0 .  I t  f o l -  
l o w s  f r o m  E q s .  ( 4 - 6 )  a t  ( = ~ t h a t  

T + = T - = T  v, P + = P - = P ~ ( T v ) ,  T ' + = T ' - ,  P ' + = P ' - .  ( 4 6 )  

We will use the following scheme to solve the model with the two-phase region. Proceeding 
as we did in the frontal model, we construct the solution in the liquid phase ~ ~ ~ < ~, 
choosing four free parameters 6, TB, P'§ T '§ Inserting condition (45) into the mass- and 
heat-balance conditions (40-41), we find the values of s* and T'-. Here, the latter two 
quantities are expressed through already-known variables with the index +. Since Eqs. (18- 
19) are of the first order relative to s, knowledge of the values of s*, T, and T'- is suf- 
ficient to solve the Cauchy problem to the left of 8. (We remind the reader that we sub- 
stituted the relation P = Pr(T) into Eqs. (18-19).) In the process of solving the Cauchy 
problem, we find the point 7 at which s(7) = 0. The solution is then continued smoothly 
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Fig. i. Supercooling of vapor in a uni- 
dimensional frontal model, P0 = 80 atm, 
PI = 4.85 atm, To = 215~ T, ~ P, 
atm; $, m/se~c. 
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Fig.  2. Unidimensional model w i th  two- 
phase region: case of a solution with 
a two-zone structure, Po = 60 atm, PI = 
3.69 atm, T O = 215~ 

into the vapor region with conditions (46). The free parameters are varied until the bound- 
ary conditions are satisfied at ~ = 0 and ~ + ~. 

We used a variant of the Runge-Kutta method with fourth-order accuracy to perform the 
calculations. The step was selected automatically in this variant. Certain complications 
connected with loss of stability of the Cauchy problem as the boundary $ = 0 was approached 
were encountered in the numerical calculation. As was shown by subsequent calculations, 
this instability was due to the presence of a thermal boundary layer in the neighborhood of 
the boundary $ = 0. The computational difficulties were resolved by extending the scale in 
the boundary region. It is natural to expect the presence of a thermal boundary layer to 
cause ~ to be slightly dependent on the temperature boundary condition at ~ = 0. This is 
in fact the situation we observed in our numerical calculation. 

The calculations provided evidence of the physical contradiction of the frontal model 
for actual porous media having permeabilities no less than 10 -16 m 2. The contradiction lies 
in the manifestation of "supercooling" of the vapor and/or "superheating" of the water. The 
frontal regime may be realized at lower permeabilities (such as in clays). Figure i il- 
lustrates the case of supercooling of vapor in the frontal model. The three-zone structure 
of the solution in the model with the two-phase region is seen at permeabilities close to 
the permeability of clays. At lower k, only a two-zone structure(water-vapor mixture and 
water) is realized (see Fig. 2). 

The model constructed here can be used to analyze processes which take place in high- 
temperature strata containing geothermal water. 

We used the following initial data in our calcul~tions: m = 0.25, Pl = 103 kg/ma, Ps = 
2.6"103 kg/m 3, k = 10 -11 - 10 -17 m 2, ~i = 0.001Pa'sec, D2 = 1.22"10-5 Pa-sec, c~ = J/kg/K, 
c~ = 2000 J/kg/K, c s = 840 J/kg/K, 11 = 0.682 W/m/K, 12 = 0.03 W/m/K, I s = 1.0 WTm/K, ~i = 
0"5"i0-s Pa-1, es = 10-1~ Pa-1, P~ = 15-9"105 Pa, Tr = 473 K, A = 3.1412"10 ~ J/kg, B = - 
2,3446-103 J/kg/K. 
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NOTATION 

m, porosity; s, water saturation; Pi, density; vi, filtration velocity; k, absolute 
permeability; fi, relative permeability; Bi, viscosity; ei, specific energy; hi, specific 
heat; ~z, coefficient of compressibility of water; ~z, coefficient of thermal expansion of 
water; ~s, elastic modulus of skeleton; h i, thermal conductivity of the i-th phase; A, ef- 
fective thermal conductivity of the mixture; P = Pr(T), saturation vapor pressure at the 
given temperature; c~, isobaric heat capacity of the i-th phase; Cs, heat capacity of the 
skeleton; p~, density at a discontinuity. Indzces: i) water; 2) vapor. 
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CHANGE IN BOILING REGIMES ON THICK HEATING 

SURFACES 

V. U. Sidyganov and E. V. Ametistov UDC 536.423 

An analysis is made of the dependence of the structure and velocity of the boil- 
ing-regime transition front on the level of heat release and the properties of a 
heating surface. 

Changes in boiling regimes on heating surfaces are an important engineering problem. 
Solving this problem will make it possible to improve the efficiency of processes involving 
quenching and thermal stabilization and increase the reliability of steam generators, heat 
exchangers, and other heat-engineering apparatus. The dynamics of the regime transition 
determines the design response time for the protection of superconducting devices and the 
structure and properties of materials that are quenched. 

There are presently two approaches to the study of boiling-regime changes. The first 
approach focuses on hydrodynamic and heat-transfer conditions in the vapor-liquid layer. 
The characteristic scales and times of these processes are determined by growing bubbles 
and jets of vapor which displace the liquid and wet the heating surface with drops of the 
liquid. The dynamics of other small hydrodynamic structures [I] also play a role in determ- 
ining the characteristic scales and times [I]. The thermal perturbations generated by these 
structures penetrate the heating surface to a certain depth, so that the inertial thermal 
properties of the material of the surface affect the rate of heat transfer and the critical 
thermal loads [2]. 

In the second approach, the evolution of the temperature fields inside the heat-emit- 
ting surface is regarded as a very slow process which determines the dynamics of the boiling- 
regime shift [3]. Here, it is assumed that the Nukiyami boiling curve is externally assigned, 
either on the basis of an experiment or in accordance with some semi-empirical theory de- 
veloped by the first approach. The evolution of the temperature fields should occur at 
scales greater than the size of the small nonsteady hydrodynamic structures mentioned above. 
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